

A

# PRODUCT SELECTION DATA

# WATER-SOURCED SCREW HEAT PUMPS

•

A

WC:

0

10004

.

A

Quality design and construction Very compact dimensions for easy installation Two independent refrigerant circuits Specific options for marine and process applications Simple to service

# 30HXC

## Nominal Heating capacity 338-1557 kW

The 30HXC units are water-cooled heat pump, designed from the ground up to meet the needs of today and tomorrow:

- ozone-friendly HFC-134a refrigerant
- screw compressors
- fits through a standard door with no disassembly required
- mechanically cleanable evaporators and condensers

All units are equipped with Pro-Dialog Plus control to optimise the efficiency of the refrigerant circuit.



CARRIER participates in the ECP programme for LCP/HP Check ongoing validity of certificate: www.eurovent-certification.com

# **CUSTOMER BENEFITS**

## **Features**

- Quality design and construction make the 30HXC unit the preferred choice.
- Non-controlled, ozone-friendly HFC-134a refrigerant.
- HCF-134a is a proven, non-toxic, non-flammable refrigerant.
- Medium-pressure refrigerant HFC-134a minimises stress on the compressors and ensures their long operating life.
- The 30HXC units are equipped with screw compressors for extremely quiet operation and low-vibration levels.
- The 30HXC units exceed the efficiency level of average industry standards for both full- and part-load operation, saving on operating costs, through lower electrical costs.
- The 30HXC control is fully automatic. The leaving water temperature is continuously monitored to detect load and flow changes. This combination provides the most precise temperature control available.
- Two independent refrigerant circuits the second one takes over automatically, when the first one malfunctions, maintening partial heating under all circumstances.
- Easy installation the 30HXC heat pump are supplied with a full refrigerant charge, and conveniently located power supply and water inlet and outlet connections.
- Auto-diagnostics quick display of the machine status.
- Multiple compressor concept for optimised part-load efficiency and minimised starting current.
- Series star/delta starter, limiting the start-up current on 30HXC 080-190 units.
- All units are also available as high condensing temperature with condenser insulation (option 150A). Their application range is the same as for the standard units, on which they are based, but they also allow condenser leaving water temperatures of up to 63°C. Pro-Dialog control offers all the advantages of the standard units, plus control of the leaving condenser water temperature.

## **Easy installation**

- The 30HXC has a compact design that fits through a standard door opening and requires minimal indoor space. The 30HXC is supplied as a complete package for easy installation. There are no extra controls, timers, starters or other items to install.
- 30HXC units have a single power point and one main disconnect/isolator switch for sizes 30HXC 080 to 190, and one power point and one main disconnect/isolator switch per circuit for sizes 30HXC 200 to 375. The hydraulic connections are simple and facilitated by the use of Victaulic connections for the evaporator and condenser.

## Simple to service

- Mechanically-cleanable evaporator and condenser
- Twin-screw compressors which require minimum routine service or maintenance.
- Easily accessed suction and discharge pressure and temperature information via a display module.

## **Pro-Dialog Plus control**

Pro-Dialog Plus is an advanced numeric control system that combines intelligence with great operating simplicity.

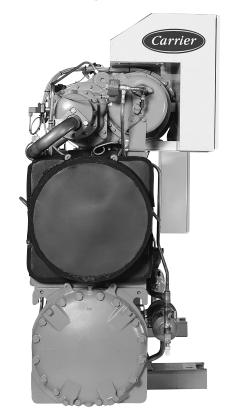
# Pro-Dialog Plus ensures intelligent leaving water temperature control and optimises energy requirements.

- The PID control algorithm with permanent compensation for the difference between the heat exchanger entering and leaving temperature, anticipates load variations, guarantees leaving water temperature stability and prevents unnecessary compressor cycling.
- The long-stroke electronic expansion valves (EXV), together with refrigerant level control via heat exchange in the evaporator, allows a significant energy efficiency improvement at part load conditions, and faultless heat pump operation in a wider temperature range.
- Adjustable ramp loading, according to the inertia of the application, avoids load increases that are too fast and too frequent, increasing unit life and limiting power consumption peaks.
- Several capacity loading possibilities ensure improved start-up at low outdoor air temperature, and permit use of one of the refrigerant circuits as a back-up circuit.

# Pro-Dialog Plus ensures preventive protection and enhances heat pump reliability.

- Equalisation of compressor operating hours
- No capillary tubes or pressostats (except as safety device)
- Pro-Dialog Plus monitors all heat pump safety parameters.
- The fault history function and the fault codes facilitate immediate location of faults and in certain cases the conditions causing the alarm. Prognostic and preventive maintenance functions (incorrect water loop, oil filter dirty etc.) permit anticipation of possible problems.

#### **Pro-Dialog Plus operator interface**




# **CUSTOMER BENEFITS**

## Pro-Dialog Plus offers extended communications capabilities

- Clear and easy-to-understand operator interface. The LEDs, numeric displays and touch keys are well-positioned on the schematic heat pump diagram. The user immediately knows all operating parameters: pressures, temperatures, operating hours, etc.
- The extensive heat pump remote control capabilities (wired connection) allow integration into building management systems (see Technical Description)
- RS485 series port for connection to the Carrier Comfort Network (CCN) or any other monitoring system (optional communications interface with open protocol allows transfer of almost 40 parameters).
- Parallel piloting of two units as standard, or of several units with Flotronic System Manager (FSM) and Chiller System Manager (CSM III) options.
- The control permits:
  - Control in master/slave configuration of two units operating in parallel.
  - Programming of operating time schedules (up to 8 periods per week)
  - Programming of operating time schedules for the second set point (up to 8 periods per week)
  - Definition of operating time period with demand limit.
  - Integration of the unit into a building management system (BMS): serial port RS 485.
- Control of the customer's water pump (dual pump with automatic change-over optional).
- Control at the second set point (example: room unoccupied).
- Set point reset as a function of the air temperature or the difference between entering and leaving water temperature.

The 30HXC fits through a standard door opening, minimising installation cost.



# **OPTIONS**

| Options                                                     | No.                                                                                          | Description                                                                                                   | Advantages                                                                                                                                                                                                                                                                                                           | Use                                                       |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Low-temperature brine solution                              | 6                                                                                            | Low temperature glycol solution production down to -10 °C with ethylene glycol                                | Covers specific applications such as ice storage and industrial processes                                                                                                                                                                                                                                            | 090, 110, 130,<br>155, 175, 200,<br>230, 260, 310,<br>345 |  |  |
| IP44C electrical<br>protection level                        | 20                                                                                           | Control box thightness reinforced                                                                             | Permits unit installation in more severe envrionments                                                                                                                                                                                                                                                                | 080-375                                                   |  |  |
| Tropicalisation                                             | 22                                                                                           | Unit control box suitable for tropical climates                                                               | Reduced relative humidity in the control boxes<br>for operation in tropical climates (warm and<br>humid)                                                                                                                                                                                                             |                                                           |  |  |
| Soft Starter                                                | 25                                                                                           | Electronic starter on each compressor                                                                         | Reduced start-up current                                                                                                                                                                                                                                                                                             | 200-375                                                   |  |  |
| Cu/Ni condensers                                            | 33                                                                                           | Condenser tubes and tubes sheets in 90-10<br>Copper/Nickel alloy                                              | Allows applications with sea water                                                                                                                                                                                                                                                                                   | 080-375                                                   |  |  |
| Cu/Ni cond. + Sakaphen<br>coated water boxes                | 34A                                                                                          | Condenser tubes and tubes sheets in 90-10<br>Copper/Nickel alloy and Sakaphen treatment<br>inside water boxes | Allows applications with sea water, improved durability of water boxes                                                                                                                                                                                                                                               | 080-375                                                   |  |  |
| Unit supplied in two assembled parts                        | 51                                                                                           | The unit is equipped with flanges that allow disassembly of the unit on site                                  | Facilitates installation in plant rooms with limited access                                                                                                                                                                                                                                                          | 080-375                                                   |  |  |
| 460V-3-60Hz power<br>supply                                 | 60                                                                                           | 460V-3-60Hz power supply                                                                                      | er supply Permits unit connection to 460V-3-60Hz power supply                                                                                                                                                                                                                                                        |                                                           |  |  |
| 380V-3-60Hz power<br>supply                                 | 61                                                                                           | 380V-3-60Hz power supply                                                                                      | Permits unit connection to 380V-3-60Hz power<br>supply                                                                                                                                                                                                                                                               | 080-375                                                   |  |  |
| Evap. single pump<br>power/control circuit                  | Unit equipped with an electrical power and Quick and easy installation: the control of fixed |                                                                                                               | 080-375                                                                                                                                                                                                                                                                                                              |                                                           |  |  |
| Evap. dual pumps power/ control circuit                     | 84D                                                                                          | Unit equipped with an electrical power and control circuit for two pumps evaporator side                      | er and Quick and easy installation: the control of fixed                                                                                                                                                                                                                                                             |                                                           |  |  |
| Cond. single pump<br>power/control circuit                  | 84R                                                                                          | Unit equipped with an electrical power and control circuit for one pump condenser side                        |                                                                                                                                                                                                                                                                                                                      |                                                           |  |  |
| Compressor suction valve                                    | 92                                                                                           | Valve set for the compressor suction side to isolate it in the refrigerant circuit                            | Simplified service and maintenance                                                                                                                                                                                                                                                                                   |                                                           |  |  |
| Evaporator with one pass less                               | 100C                                                                                         | Evaporator with one pass on the water side.<br>Evaporator inlet and outlet on opposite sides.                 |                                                                                                                                                                                                                                                                                                                      |                                                           |  |  |
| Condenser with one pass less                                | 102C                                                                                         | Condenser with one pass on the water side.<br>Condenser inlet and outlet on opposite sides.                   | Easy to install, depending on site. Reduced<br>pressure drops                                                                                                                                                                                                                                                        | 080-375                                                   |  |  |
| 21 bar evaporator                                           | 104                                                                                          | Reinforced evaporator for extension of the maximum water-side service pressure to 21 bar (standard 10 bar)    | Covers applications with a high water column evaporator side (typically high buildings)                                                                                                                                                                                                                              | 080-375                                                   |  |  |
| 21 bar condenser                                            | 104A                                                                                         | Reinforced condenser for extension of the maximum water-side service pressure to 21 bar (standard 10 bar)     | Covers applications with a high water column condenser side (typically high buildings)                                                                                                                                                                                                                               | 080-375                                                   |  |  |
| Reversed evaporator water connections                       | 107                                                                                          | Evaporator with reversed water inlet/outlet                                                                   | Easy installation on sites with specific requirements                                                                                                                                                                                                                                                                | 080-375                                                   |  |  |
| Reversed condenser water connections                        | 107A                                                                                         | Condenser with reversed water inlet/outlet                                                                    | Easy installation on sites with specific requirements                                                                                                                                                                                                                                                                | 080-375                                                   |  |  |
| J-Bus gateway                                               | 148B                                                                                         | Bi-directional communication board complying with JBus protocol                                               | Connects the unit by communication bus to a building management system                                                                                                                                                                                                                                               | 080-375                                                   |  |  |
| BacNet gateway                                              | 148C                                                                                         | Bi-directional communication board complying<br>with BacNet protocol                                          | Easy connection by communication bus to a<br>building management system                                                                                                                                                                                                                                              | 080-375                                                   |  |  |
| Lon gateway                                                 | 148D                                                                                         | Bi-directional communication board complying with Lon Talk protocol                                           | Connects the unit by communication bus to a building management system                                                                                                                                                                                                                                               | 080-375                                                   |  |  |
| High condensing<br>temperature with<br>condenser insulation | 150A                                                                                         | Increased condenser leaving water<br>temperature up to 63°C with thermal<br>condenseur insulation             | Allows applications with high condensing<br>temperature and minimizes thermal<br>dispersions condenser side                                                                                                                                                                                                          | 080-375                                                   |  |  |
| Control for low cond.<br>temperature                        | 152                                                                                          | Output signal (0-10 V) to control the condenser water inlet valve                                             | Simple installation: for applications with cold<br>water at condenser inlet (ex. ground-source,<br>groundwater-source, superficial water-source<br>applications) the signal permits to control a 2<br>or 3-way valve to maintain condenser water<br>temperature (and so condensing pressure) at<br>acceptable values | 080-375                                                   |  |  |
| RS 485 interface with open protocol                         | 155                                                                                          | Additional RS 485 communication board                                                                         | Communication via CCN protocol                                                                                                                                                                                                                                                                                       | 080-375                                                   |  |  |

# **OPTIONS**

| Options                                 | No. | Description                                                                                                                                     | Advantages                                                                                                             | Use     |
|-----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------|
| Dual relief valves on<br>3-way valve    | 194 | Three-way valve upstream of dual relief valves on the evaporator and the oil separator                                                          | Valve replacement and inspection facilitated<br>without refrigerant loss. Comforms to European<br>standard EN378/BGVD4 | 080-190 |
| Compliance with Swiss regulations       | 197 | Additional tests on the water heat exchangers:<br>supply (additional of PED documents)<br>supplementary certificates and test<br>certifications | Conformance with Swiss regulations                                                                                     | 080-375 |
| Compliance with Russian regulations     | 199 | EAC certification                                                                                                                               | Conformance with Russian regulations                                                                                   | 080-375 |
| Welded evaporator connection kit        | 266 | Victaulic piping connections with welded joints                                                                                                 | Easy installation                                                                                                      | 080-375 |
| Welded condenser water connection kit   | 267 | Victaulic piping connections with welded joints                                                                                                 | Easy installation                                                                                                      | 080-375 |
| Flanged evaporator water connection kit | 268 | Victaulic piping connections with flanged joints                                                                                                | Easy installation                                                                                                      | 080-375 |
| Flanged condenser water connection kit  | 269 | Victaulic piping connections with flanged joints                                                                                                | Easy installation                                                                                                      | 080-375 |
| 230V electrical plug                    | 284 | 230V AC power supply source provided with<br>plug socket and transformer (180 VA, 0,8<br>Amps)                                                  | Permits connection of a lanton or an electrical                                                                        | 080-375 |

# **PHYSICAL DATA**

|                             |           |                  |                    |           |       | 1        |                                  |           |           |         |       |       |
|-----------------------------|-----------|------------------|--------------------|-----------|-------|----------|----------------------------------|-----------|-----------|---------|-------|-------|
| зонхс                       |           |                  |                    | 080       | 090   | 100      | 110                              | 120       | 130       | 140     | 155   | 175   |
| Heating                     |           |                  |                    |           |       |          |                                  |           |           |         |       |       |
| Standard unit               | 1.0.4/4   | Nominal capacity | kW                 | 340       | 371   | 415      | 449                              | 491       | 538       | 610     | 651   | 717   |
| Full load performances*     | HW1       | COP              | kW/kW              | 5,59      | 5,38  | 5,43     | 5,26                             | 5,54      | 5,36      | 5,39    | 5,22  | 5,32  |
|                             |           | Nominal capacity | kW                 | 326       | 358   | 393      | 434                              | 468       | 529       | 582     | 633   | 682   |
|                             | HW2       | COP              | kW/kW              | 4,29      | 4,21  | 4,18     | 4,21                             | 4,33      | 4,23      | 4.25    | 4,11  | 4,11  |
| Sound levels - standard u   | nit       |                  |                    |           |       |          |                                  |           |           |         |       |       |
| Sound power level (1)       |           |                  | dB(A)              | 94        | 94    | 94       | 94                               | 94        | 97        | 98      | 100   | 101   |
| Sound pressure level at 1m  | (2)       |                  | dB(A)              | 77        | 77    | 77       | 77                               | 76        | 79        | 80      | 82    | 83    |
| Operating weight            |           |                  | kg                 | 2274      | 2279  | 2302     | 2343                             | 2615      | 2617      | 2702    | 2712  | 3083  |
| Compressor size             |           | Semi             | -hermet            | ic, twin- | screw | its noi  | ompress<br>minal he<br>rigeratio | eating ca | apacity i | in tons |       |       |
| Circuit A                   |           |                  |                    | 39        | 46    | 46       | 56                               | 56        | 66        | 80      | 80    | 80    |
| Circuit B                   |           |                  |                    | 39        | 39    | 46       | 46                               | 56        | 56        | 56      | 66    | 80    |
| Refrigerant - standard unit | t (3)     |                  |                    |           |       |          |                                  | R-134a    | 1         |         |       |       |
| Circuit A                   |           | kg               | 33                 | 33        | 32    | 31       | 49                               | 51        | 48        | 54      | 54    |       |
|                             | Gircuit A |                  | teqCO <sub>2</sub> | 47        | 47    | 46       | 44                               | 70        | 73        | 69      | 77    | 77    |
| Circuit B                   |           | kg               | 34                 | 34        | 30    | 35       | 52                               | 47        | 48        | 57      | 50    |       |
|                             |           |                  | teqCO <sub>2</sub> | 49        | 49    | 43       | 50                               | 74        | 67        | 69      | 82    | 72    |
| Oil - standard unit (4)     |           |                  |                    |           | P     | olyolest | er oil CA                        | RRIER     | SPEC.     | PP 47-  | 32    |       |
| Circuit A/B                 |           |                  | 1                  | 17/17     | 17/17 | 17/17    | 17/17                            | 17/17     | 17/17     | 17/17   | 17/17 | 17/17 |
| Capacity control            |           |                  |                    |           |       | P        | RO-DIA                           | LOG PI    | us conti  | rol     |       |       |
| No. of control steps        |           |                  |                    | 6         | 6     | 6        | 6                                | 6         | 6         | 6       | 6     | 6     |
| Minimum step capacity       |           |                  | %                  | 19        | 19    | 21       | 19                               | 21        | 19        | 17      | 19    | 21    |
| Evaporator                  |           |                  |                    |           | Shell | and tub  | e with i                         | nternally | / finned  | copper  | tubes |       |
| Net water volume            |           |                  | Ι                  | 50        | 50    | 58       | 69                               | 65        | 65        | 75      | 75    | 88    |
| Water connections           |           |                  |                    |           |       |          | Victau                           | ic conn   | ections   |         |       |       |
| Inlet/outlet                |           |                  | in                 | 4         | 4     | 4        | 5                                | 5         | 5         | 5       | 5     | 5     |
| Drain and vent (NPT)        |           |                  | in                 | 3/8       | 3/8   | 3/8      | 3/8                              | 3/8       | 3/8       | 3/8     | 3/8   | 3/8   |
| Max. water-side operating p | ressure   |                  | kPa                | 1000      | 1000  | 1000     | 1000                             | 1000      | 1000      | 1000    | 1000  | 1000  |
| Condenser                   |           |                  |                    |           |       | and tub  |                                  |           | 1         | 1       | 1     |       |
| Net water volume            |           |                  | I                  | 48        | 48    | 48       | 48                               | 78        | 78        | 90      | 90    | 108   |
| Water connections           |           |                  |                    |           |       |          |                                  | lic conn  |           |         |       |       |
| Inlet/outlet                |           |                  | in                 | 5         | 5     | 5        | 5                                | 5         | 5         | 5       | 5     | 6     |
| Drain and vent (NPT)        |           |                  | in                 | 3/8       | 3/8   | 3/8      | 3/8                              | 3/8       | 3/8       | 3/8     | 3/8   | 3/8   |
| Max. water-side operating p | ressure   |                  | kPa                | 1000      | 1000  | 1000     | 1000                             | 1000      | 1000      | 1000    | 1000  | 1000  |

\* In accordance with standard EN14511-3:2013

HW1 Heating mode conditions: Evaporator entering/leaving water temperature 10°C/7°C, condenser entering/leaving water temperature 30°C/35°C, evaporator and condenser fouling factor 0 m<sup>2</sup>. k/W

HW2 Heating mode conditions: Evaporator entering/leaving water temperature 10°C/7°C, condenser entering/leaving water temperature 40°C/45°C, evaporator and condenser fouling factor 0 m<sup>2</sup>. k/W

(1) In dB ref=10-12 W, (A) weighting. Declared dualnumber noise emission values in accordance with ISO 4871 (with an associated uncertainty of +/-3dB(A)). Measured in accordance with ISO 9614-1 and certified by Eurovent.

(2) In dB ref 20μPa, (A) weighting. Declared dualnumber noise emission values in accordance with ISO 4871 (with an associated uncertainty of +/-3dB(A)). For information, calculated from the sound power level Lw(A).

(3) Values shown are a guideline only. Please refer to the unit nameplate

(4) For options 150 and 150A the units are supplied with an additional charge of 3 litres per compressor.



Eurovent certified values

# **PHYSICAL DATA**

|                                                  |         |                  |                    |                                        |         |             |           |              | Ì         |          |         |
|--------------------------------------------------|---------|------------------|--------------------|----------------------------------------|---------|-------------|-----------|--------------|-----------|----------|---------|
| зонхс                                            |         |                  |                    | 190                                    | 200     | 230         | 260       | 285          | 310       | 345      | 375     |
| Heating                                          |         |                  |                    |                                        |         |             |           |              |           |          |         |
| Standard unit                                    |         | Nominal capacity | kW                 | 780                                    | 838     | 974         | 1084      | 1178         | 1326      | 1454     | 1563    |
| Full load performances*                          | HW1     | COP              | kW/kW              | 5,32                                   | 5,36    | 5,39        | 5,14      | 5,38         | 5,42      | 5,22     | 5,28    |
|                                                  |         | Nominal capacity | kW                 | 773                                    | 834     | 927         | 1025      | 1171         | 1266      | 1369     | 1554    |
|                                                  | HW2     | COP              | kW/kW              | 4,18                                   | 4.23    | 4,19        | 4.07      | 4,11         | 4,12      | 4.09     | 4,13    |
| Sound levels - standard u                        | nit     |                  |                    |                                        |         |             |           |              |           |          |         |
| Sound power level (1)                            |         |                  | dB(A)              | 101                                    | 99      | 101         | 102       | 102          | 103       | 104      | 104     |
| Sound pressure level at 1 m <sup>(2)</sup> dB(A) |         |                  |                    | 83                                     | 80      | 82          | 83        | 83           | 84        | 85       | 85      |
| Operating weight kg                              |         |                  |                    | 3179                                   | 3873    | 4602        | 4656      | 4776         | 5477      | 5553     | 5721    |
| Compressor size                                  |         | The co           | •                  |                                        |         | d by its no |           | 0            | pacity in |          |         |
| •                                                |         |                  |                    |                                        | 1       | 1           | <u> </u>  | n (1 ton =   | 1         | ,<br>    | 1       |
| Circuit A                                        |         |                  |                    | 80+                                    | 66/56   | 80/56       | 80/80     | 80+/80+      |           | 80/80    | 80+/80+ |
| Circuit B                                        |         |                  |                    | 80+                                    | 66      | 80          | 80        | 80+          | 80/66     | 80/80    | 80+/80+ |
| Refrigerant - standard uni                       | t (3)   |                  |                    |                                        | 1       |             |           |              |           |          |         |
| Circuit A                                        |         | kg               | 75                 | 92                                     | 115     | 117         | 132       | 109          | 96        | 119      |         |
|                                                  |         |                  | teqCO <sub>2</sub> | 100                                    | 132     | 164         | 167       | 189          | 156       | 137      | 170     |
| Circuit B                                        |         | kg               | 75                 | 68                                     | 63      | 75          | 80        | 106          | 109       | 137      |         |
|                                                  |         |                  | teqCO <sub>2</sub> | 100                                    | 97      | 90          | 107       | 114          | 152       | 156      | 196     |
| Oil - standard unit (4)                          |         |                  |                    | Polyolester oil CARRIER SPEC. PP 47-32 |         |             |           |              |           |          |         |
| Circuit A/B                                      |         |                  | I                  | 17/17                                  | 30/17   | 30/17       | 30/17     | 30/17        | 34/34     | 34/34    | 34/34   |
| Capacity control                                 |         |                  |                    |                                        |         | PR          | O-DIALC   | OG Plus co   | ontrol    |          |         |
| No. of control steps                             |         |                  |                    | 6                                      | 8       | 8           | 8         | 8            | 10        | 10       | 10      |
| Minimum step capacity                            |         |                  | %                  | 21                                     | 14      | 14          | 14        | 14           | 10        | 10       | 10      |
| Evaporator                                       |         |                  |                    |                                        | Shell a | and tube    | with inte | ernally finr | ed copp   | er tubes |         |
| Net water volume                                 |         |                  | I                  | 88                                     | 126     | 155         | 170       | 170          | 191       | 208      | 208     |
| Water connections                                |         |                  |                    |                                        |         | `           | /ictaulic | connectio    | ns        |          | ·       |
| Inlet/outlet                                     |         |                  | in                 | 5                                      | 6       | 6           | 6         | 6            | 8         | 8        | 8       |
| Drain and vent (NPT)                             |         |                  | in                 | 3/8                                    | 3/8     | 3/8         | 3/8       | 3/8          | 3/8       | 3/8      | 3/8     |
| Max. water-side operating p                      | ressure |                  | kPa                | 1000                                   | 1000    | 1000        | 1000      | 1000         | 1000      | 1000     | 1000    |
| Condenser                                        |         |                  |                    |                                        | Shell a | and tube    | with inte | ernally finn | ed copp   | er tubes |         |
| Net water volume                                 |         |                  | I                  | 108                                    | 141     | 190         | 190       | 190          | 255       | 255      | 255     |
| Water connections                                |         |                  |                    |                                        |         | ``          | /ictaulic | connectio    | ns        |          |         |
| Inlet/outlet                                     |         |                  | in                 | 6                                      | 6       | 8           | 8         | 8            | 8         | 8        | 8       |
| Drain and vent (NPT)                             |         |                  | in                 | 3/8                                    | 3/8     | 3/8         | 3/8       | 3/8          | 3/8       | 3/8      | 3/8     |
| Max. water-side operating p                      | ressure |                  | kPa                | 1000                                   | 1000    | 1000        | 1000      | 1000         | 1000      | 1000     | 1000    |

In accordance with standard EN14511-3:2013

HW1 Heating mode conditions: Evaporator entering/leaving water temperature 10°C/7°C, condenser entering/leaving water temperature 30°C/35°C, evaporator and condenser fouling factor 0 m<sup>2</sup>. k/W

HW2 Heating mode conditions: Evaporator entering/leaving water temperature 10°C/7°C, condenser entering/leaving water temperature 40°C/45°C, evaporator and condenser fouling factor 0 m<sup>2</sup>. k/W

In dB ref=10-12 W, (A) weighting. Declared dualnumber noise emission values in accordance with ISO 4871 (with an associated uncertainty of +/-3dB(A)). (1) Measured in accordance with ISO 9614-1 and certified by Eurovent. In dB ref 20µPa, (A) weighting. Declared dualnumber noise emission values in accordance with ISO 4871 (with an associated uncertainty of +/-3dB(A)). For

(2) information, calculated from the sound power level Lw(A). Values shown are a guideline only. Please refer to the unit nameplate

(3)

For options 150 and 150A the units are supplied with an additional charge of 3 litres per compressor. (4)



Eurovent certified values

# **ELECTRICAL DATA**

|                                                                                                        |         |      | _        |      |      | _      |         |       | _     |        |        | _      | _     |        |       |      |      |      |
|--------------------------------------------------------------------------------------------------------|---------|------|----------|------|------|--------|---------|-------|-------|--------|--------|--------|-------|--------|-------|------|------|------|
| 30HXC                                                                                                  |         | 080  | 090      | 100  | 110  | 120    | 130     | 140   | 155   | 175    | 190    | 200    | 230   | 260    | 285   | 310  | 345  | 375  |
| Power circuit                                                                                          |         |      |          |      |      |        |         |       |       |        |        |        |       |        |       |      |      |      |
| Nominal power supply (Un) <sup>(1)</sup>                                                               | V-ph-Hz |      | 400-3-50 |      |      |        |         |       |       |        |        |        |       | -      |       |      |      |      |
| Voltage range                                                                                          | V       |      | 360-440  |      |      |        |         |       |       |        |        |        |       |        |       |      |      |      |
| Control circuit supply                                                                                 |         |      |          | The  | con  | rol ci | rcuit i | s sup | plied | via tl | ne fao | ctory- | insta | led tr | ansfo | rmer |      |      |
| Nominal power input <sup>(1)</sup>                                                                     | kW      | 53   | 62       | 67   | 76   | 80     | 89      | 102   | 112   | 121    | 129    | 140    | 164   | 192    | 195   | 221  | 250  | 263  |
| Nominal current drawn <sup>(1)</sup>                                                                   | А       | 101  | 115      | 127  | 143  | 149    | 168     | 190   | 207   | 226    | 234    | 255    | 294   | 337    | 354   | 399  | 448  | 477  |
| Max. power input <sup>(2)</sup>                                                                        | kW      | 87   | 97       | 108  | 119  | 131    | 144     | 161   | 175   | 192    | 212    | 223    | 257   | 288    | 318   | 350  | 384  | 424  |
| Circuit A                                                                                              | kW      | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 144    | 161   | 192    | 212   | 175  | 192  | 212  |
| Circuit B                                                                                              | kW      | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 79     | 96    | 96     | 106   | 175  | 192  | 212  |
| Cosine phi, unit at full load                                                                          |         | 0.88 | 0.88     | 0.88 | 0.88 | 0.89   | 0.88    | 0.88  | 0.89  | 0.89   | 0.89   | 0.88   | 0.89  | 0.89   | 0.89  | 0.89 | 0.89 | 0.89 |
| Total harmonic distortion <sup>(3)</sup>                                                               | %       | 0    | 0        | 0    | 0    | 0      | 0       | 0     | 0     | 0      | 0      | 0      | 0     | 0      | 0     | 0    | 0    | 0    |
| Max. current drawn (Un - 10%) <sup>(3)</sup>                                                           | Α       | 158  | 176      | 195  | 215  | 235    | 259     | 289   | 314   | 344    | 379    | 401    | 461   | 517    | 568   | 628  | 688  | 758  |
| Circuit A                                                                                              | А       | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 259    | 289   | 344    | 379   | 314  | 344  | 379  |
| Circuit B                                                                                              | А       | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 142    | 172   | 172    | 189   | 314  | 344  | 379  |
| Max. current drawn (Un)(3)                                                                             | А       | 143  | 160      | 177  | 195  | 213    | 236     | 263   | 285   | 312    | 344    | 365    | 419   | 468    | 516   | 570  | 624  | 688  |
| Circuit A <sup>(3)</sup>                                                                               | А       | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 236    | 263   | 312    | 344   | 285  | 312  | 344  |
| Circuit B <sup>(3)</sup>                                                                               | А       | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 129    | 156   | 156    | 172   | 285  | 312  | 344  |
| Max. starting current, std. unit (Un) <sup>(4)</sup>                                                   | А       | 181  | 206      | 223  | 249  | 267    | 298     | 333   | 355   | 382    | 442    | 841    | 978   | 1027   | 1200  | 1129 | 1184 | 1373 |
| Circuit A <sup>(4)</sup>                                                                               | А       | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 712    | 822   | 871    | 1028  | 844  | 871  | 1028 |
| Circuit B <sup>(4)</sup>                                                                               | А       | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 605    | 715   | 715    | 856   | 844  | 871  | 1028 |
| Max. starting current/max. current draw ratio, unit                                                    |         | 1.26 | 1.28     | 1.26 | 1.27 | 1.25   | 1.26    | 1.27  | 1.24  | 1.22   | 1.28   | 2.31   | 2.33  | 2.19   | 2.32  | 1.98 | 1.89 | 1.99 |
| Max. starting current/max. current                                                                     |         |      |          |      |      |        |         |       |       |        |        |        |       |        |       |      |      |      |
| draw ratio, circuit A                                                                                  |         | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 3.02   | 3.13  | 2.79   | 2.99  | 2.96 | 2.79 | 2.99 |
| Max. starting current/max. current                                                                     |         |      |          |      |      |        |         |       |       |        |        |        |       |        |       |      |      |      |
| draw ratio, circuit B                                                                                  |         | -    | -        | -    | -    | -      | -       | -     | -     | -      |        | 4.70   | 4.58  | 4.58   | 4.97  | 2.96 | 2.79 | 2.99 |
| Max. starting current - reduced current start (Un) <sup>(4)</sup>                                      | А       | std. | std.     | std. | std. | std.   | std.    | std.  | std.  | std.   | std.   | 636    | 683   | 732    | 824   | 834  | 889  | 997  |
| Circuit A                                                                                              | А       | std. | std.     | std. | std. | std.   | std.    | std.  | std.  | std.   | std.   | 507    | 527   | 576    | 652   | 549  | 576  | 652  |
| Circuit B                                                                                              | А       | std. | std.     | std. | std. | std.   | std.    | std.  | std.  | std.   | std.   | 330    | 370   | 370    | 385   | 549  | 576  | 652  |
| Max. starting current - red. current start/max. current draw ratio, unit                               |         | std. | std.     | std. | std. | std.   | std.    | std.  | std.  | std.   | std.   | 1.74   | 1.63  | 1.56   | 1.60  | 1.46 | 1.42 | 1.45 |
| Circuit A                                                                                              |         | std. | std.     | std. | std. | std.   | std.    | std.  | std.  | std.   | std.   | 2.15   | 2.00  | 1.84   | 1.89  | 1.93 | 1.84 | 1.98 |
| Circuit B                                                                                              |         | std. | std.     | std. | std. | std.   | std.    | std.  | std.  | std.   | std.   | 2.56   | 2.37  | 2.37   | 2.24  | 1.93 | 1.84 | 1.89 |
| Three-phase short circuit holding current                                                              | kA      | 25   | 25       | 25   | 25   | 25     | 25      | 25    | 25    | 25     | 25     | N/A    | N/A   | N/A    | N/A   | N/A  | N/A  | N/A  |
| Circuit A                                                                                              | kA      | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 25     | 25    | 25     | 25    | 25   | 25   | 25   |
| Circuit B                                                                                              | kA      | -    | -        | -    | -    | -      | -       | -     | -     | -      | -      | 15     | 15    | 15     | 15    | 25   | 25   | 25   |
| Customer standby capacity, unit or<br>circuit B, for evaporator water pump<br>connections <sup>†</sup> | kW      | 8    | 8        | 8    | 11   | 11     | 11      | 15    | 15    | 15     | 15     | 15     | 18    | 18     | 30    | 30   | 30   | 30   |

(1) Standard Eurovent conditions: Evaporator entering/leaving water temperature 12°C and 7°C. Condenser entering/leaving water temperature 30°C/35°C.

(2) Power input, compressor, at unit operating limits (evaporator water entering/leaving temperature = 15°C/10°C, condenser entering/leaving water temperature = 45°C/50°C) and a nominal voltage of 400 V (data given on the unit name plate).

(3) Maximum unit operating current at maximum unit power input.

(4) Maximum instantaneous starting current (maximum operating current of the smallest compressor(s) + locked rotor current or reduced starting current of the largest compressor)

Current and power inputs not included in the values above. Current and poN/A Not applicable.

# ELECTRICAL DATA

#### Notes, electrical data and operating conditions

- 30HXC 080-190 units have a single power connection point; 30HXC 200-
- 375 units have two connection points. The control box includes the following standard features:
- A main disconnect switch
- Starter and protection devices for the compressor motor, fans and pump Control devices
- Field connections:

All connections to the system and the electrical installations must be in full accordance with all applicable codes.

 The Carrier 30HXC units are designed and built to ensure conformance with local codes. The recommendations of European standard EN 60204-1 (corresponds to IEC 60204-1) (machine safety - electrical machine components - part 1: general regulations) are specifically taken into account, when designing the electrical equipment.

#### Electrical reserves:

Circuit B has disconnect switches and branch sections, designed to supply the evaporator and condenser pump power input.

- Important:
- Generally the recommendations of IEC 60364 are accepted as compliance with the requirements of the installation directives. Conformance with EN 60204-1 is the best means of ensuring compliance with the Machines Directive and paragraph 1.5.1.
- Annex B of EN 60204-1 describes the electrical characteristics used for the operation of the machines.

- The operating environment for the 30HXC units is specified below:
  1. Environment\* Environment as classified in IEC 60364 paragraph 3:
- indoor installation
   ambient temperature range: +5°C to +40°C, class AA4\*
- altitude: ≤ 2000 m - presence of hard solids, class AE2 (no significant dust present)
- presence of corrosive and polluting substances, class AF1 (negligible)
- 2. Power supply frequency variation:  $\pm$  2 Hz.
- 3. The neutral (N) conductor must not be connected directly to the unit (if necessary use a transformer).
- 4. Overcurrent protection of the power supply conductors is not provided with the unit.
- The factory-installed disconnect switch(es)/circuit breaker(s) is (are) of a type suitable for power interruption in accordance with EN 60947 (corresponds to IEC 60947-3).
- The units are designed for connection to TN networks (IEC 60364). For IT networks the earth connection must not be at the network earth. Provide a local earth, consult competent local organisations to complete the electrical installation.

Note: If particular aspects of an actual installation do not conform to the conditions described above, or if there are other conditions which should be considered, always contact your local Carrier representative.

\* The protection level required to conform to this class is IP21B (according to reference document IEC 60529). All 30HXC units are protected to IP23C and fulfil this protection condition.

# SOUND SPECTRUM

|     |    |     | Oc  | ctave b | ands, | Hz      |     | Sound p | ower |
|-----|----|-----|-----|---------|-------|---------|-----|---------|------|
|     |    | 125 | 250 | 500     | 1k    | 2k      | 4k  | leve    | ls   |
| 080 | dB | 79  | 84  | 89      | 88    | 90      | 84  | dB(A)   | 94   |
| 090 | dB | 79  | 84  | 89      | 88    | 90      | 84  | dB(A)   | 94   |
| 100 | dB | 79  | 84  | 89      | 88    | 90      | 84  | dB(A)   | 94   |
| 110 | dB | 79  | 84  | 89      | 88    | 90      | 84  | dB(A)   | 94   |
| 120 | dB | 79  | 84  | 89      | 88    | 90      | 84  | dB(A)   | 94   |
| 130 | dB | 79  | 84  | 96      | 92    | 90      | 84  | dB(A)   | 97   |
| 140 | dB | 79  | 84  | 89      | 93    | 94      | 87  | dB(A)   | 98   |
| 155 | dB | 79  | 84  | 96      | 93    | 94      | 91  | dB(A)   | 100  |
| 175 | dB | 79  | 84  | 83      | 96    | 97      | 91  | dB(A)   | 101  |
| 190 | dB | 79  | 84  | 83      | 96    | 97      | 91  | dB(A)   | 101  |
| 200 | dB | 79  | 84  | 98      | 94    | 90      | 84  | dB(A)   | 99   |
| 230 | dB | 79  | 84  | 89      | 96    | 97      | 91  | dB(A)   | 101  |
| 260 | dB | 80  | 85  | 84      | 97    | 98      | 92  | dB(A)   | 102  |
| 285 | dB | 80  | 85  | 84      | 97    | 98      | 92  | dB(A)   | 102  |
| 310 | dB | 81  | 87  | 99      | 96    | 97      | 94  | dB(A)   | 103  |
| 345 | dB | 82  | 87  | 86      | 99    | 100     | 94  | dB(A)   | 104  |
| 375 | dB | 82  | 87  | 86      | 99    | 100     | 94  | dB(A)   | 104  |
|     | -  | -   | -   |         |       | tempera | • • | 32(7)   | 107  |

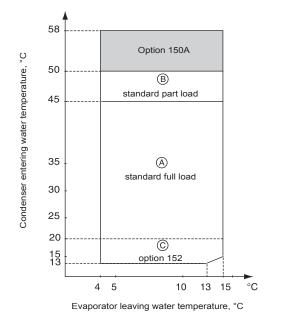
## 30HXC - standard unit and unit with high condensing temperatures (option 150A\*)

Option 150A: unit with high condensing temperatures

# **OPERATING LIMITS, STANDARD UNITS**

## **Condenser water flow rates**

| зонхс   | Minimum fl | Minimum flow rate, I/s(1) |                          |  |  |  |  |  |
|---------|------------|---------------------------|--------------------------|--|--|--|--|--|
| JUHAC   | Open loop  | Closed loop               | rate, I/s <sup>(2)</sup> |  |  |  |  |  |
| 080-110 | 2.3        | 7                         | 28.2                     |  |  |  |  |  |
| 120-130 | 3.1        | 9.3                       | 37.1                     |  |  |  |  |  |
| 140-155 | 3.7        | 11.1                      | 44.5                     |  |  |  |  |  |
| 175-190 | 4.3        | 13                        | 51.9                     |  |  |  |  |  |
| 200     | 4.9        | 14.8                      | 59.2                     |  |  |  |  |  |
| 230-285 | 6.7        | 20.1                      | 80.4                     |  |  |  |  |  |
| 310-375 | 8          | 24                        | 95.9                     |  |  |  |  |  |


(1) Based on a velocity of 0.3 m/s in a closed loop and 0.9 m/s in an open loop. (2) Based on a water velocity of 3.6 m/s.

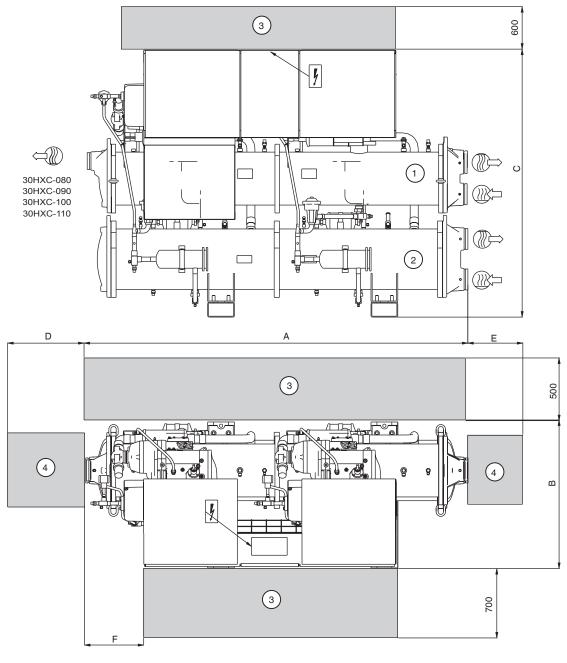
## **Evaporator water flow rates**

| 30HXC   | Minimum flow rate, I/s | Maximum flow rate, I/s <sup>(1)</sup> |
|---------|------------------------|---------------------------------------|
| 080-090 | 5.2                    | 20.8                                  |
| 100     | 6.5                    | 25.9                                  |
| 110     | 7.4                    | 29.6                                  |
| 120-130 | 8.3                    | 33.4                                  |
| 140-155 | 9.4                    | 37.8                                  |
| 175-190 | 11.5                   | 45.9                                  |
| 200     | 14.1                   | 56.3                                  |
| 230     | 16.3                   | 65.2                                  |
| 260-285 | 18.3                   | 73.4                                  |
| 310     | 20.9                   | 83.7                                  |
| 345-375 | 23                     | 91.9                                  |

(1) The maximum flow rate corresponds to a pressure drop of 100 kPa.

# **OPERATING RANGE, STANDARD UNITS**




Notes:

- 1. Evaporator and condenser  $\Delta T = 5 \text{ K}$
- For start-up at full load with a condenser water entering temperature below 20°C, a three-way valve must be used to maintain the correct condensing temperature.
- 3. Maximum condenser water leaving temperature 50°C (at full load).
- A Standard unit operating at full load.
- B Standard unit operating at reduced load.
- C Units operating with head pressure control with analogue water control valve. For transient operating modes (start-up and part load) the unit can operate down to a condenser entering water temperature of 13°C.

Additional operating range for high condensing temperature units.

# **DIMENSIONS/CLEARANCES**

## 30HXC 080-190



#### Legend

All dimensions are given in mm.

- 1 Evaporator
- 2 Condenser

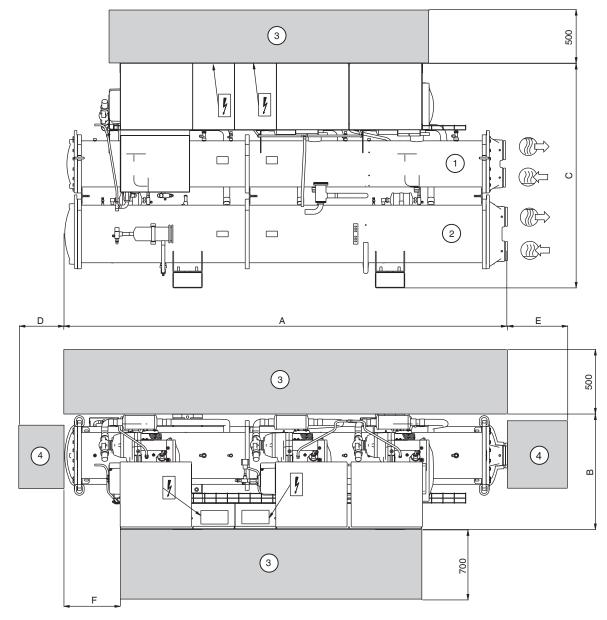
(3) Required clearances for maintenance

 Recommended space for tube removal (clearances D and E can be either on the right or the left-hand side).

Power supply connection

## Notes:

Non-certified drawings.


Refer to the certified dimensional drawings supplied with the unit or available on request, when designing an installation.

For the location of fixing points, weight distribution and coordinates of the centre of gravity refer to the certified dimensional drawings.

| зонхс   | Α    | В   | С    | D    | E    | F   |
|---------|------|-----|------|------|------|-----|
| 080-100 | 2558 | 980 | 1800 | 2200 | 1000 | 385 |
| 110     | 2565 | 980 | 1850 | 2200 | 1000 | 385 |
| 120-155 | 3275 | 980 | 1816 | 2990 | 1000 | 689 |
| 175-190 | 3275 | 980 | 1940 | 2990 | 1000 | 689 |

# **DIMENSIONS/CLEARANCES**

## 30HXC 200-375



#### Legend

All dimensions are given in mm.

- (1) Evaporator
- (2) Condenser
- (3) Required clearances for maintenance
- A Recommended space for tube removal (clearances D and E can be either on the right or the left-hand side).
- ∭ ∀ater inlet

Power supply connection

#### Notes:

Non-certified drawings.

Refer to the certified dimensional drawings supplied with the unit or available on request, when designing an installation.

For the location of fixing points, weight distribution and coordinates of the centre of gravity refer to the certified dimensional drawings.

| зонхс   | Α    | В    | С    | D    | E    | F   |
|---------|------|------|------|------|------|-----|
| 200     | 3903 | 1015 | 1980 | 3600 | 1000 | 489 |
| 230-285 | 3924 | 1015 | 2060 | 3600 | 1000 | 489 |
| 310-375 | 4533 | 1015 | 2112 | 4200 | 1000 | 503 |

# **GUIDE SPECIFICATIONS**

Water-cooled heat pump, size range: 338 to 1557 kW, Carrier model number: 30HXC

## Part 1 - General

## 1.1 - System description

Microprocessor controlled, water-cooled heat pump utilising HFC-134a, dual refrigeration circuit, screw compressors and electronic expansion valves.

## 1.2 - Quality assurance

Unit shall be rated in accordance with Eurovent standard.

Unit construction shall comply with European directives:

- Pressurised equipment directive (PED) 2014/68/EU
- Machinery directive 2006/42/EC, modified
- Low voltage directive 2014/35/EU, modified
- Electromagnetic compatibility directive 2014/30/EU, modified, and the applicable recommendations of European standards:
- Machine safety: electrical equipment in machines, general regulations, EN 60204-1
- Electromagnetic emission EN 50081-2
- Electromagnetic immunity EN 50082-2.

Unit shall be designed, manufactured and tested at a facility with a quality assurance system certified ISO 9001.

Unit shall be manufactured at a facility with an environment management system certified ISO 14001.

Unit shall be run tested at the factory.

## 1.3 - Delivery, storage and handling

Unit controls shall be capable of withstanding 55°C storage temperatures in the control compartment.

## Part 2 - Equipment

## General

Factory assembled, single-piece, water-sourced heat pump. Contained within the unit cabinet shall be all factory wiring, piping, controls, refrigerant charge (HFC-134a), required prior to field start-up.

## Compressors

- Semi-hermetic twin-screw compressors with internal muffler and check valve.
- Each compressor shall be equipped with a discharge shutoff valve.
- Capacity control shall be provided by pilot-operated solenoid valve, capable of reducing unit capacity to 20% of full load. Compressor shall start in unloaded condition.
- Motor cooling shall be provided by direct liquid injection and protected by internal overload thermistor.
- Lube oil system shall include pre-filter and internal filter capable of filtration to 3 microns.

#### **Evaporator**

- Unit shall be equipped with a single evaporator.
- Shall be manufactured, tested and stamped in accordance with the European directive for pressurised equipment 2014/68/EU. The maximum refrigerant-side operating pressure will be 2500 kPa, and the maximum water-side pressure will be 1000 kPa.
- Shall be mechanically cleanable shell-and-tube type with removable heads.
- Tubes shall be internally-enhanced, seamless-copper type, and shall be rolled into tube sheets.
- Shall be equipped with Victaulic water connections (water connection kit on demand).
- Shell shall be insulated with 19-mm closed-cell, polyurethane foam with a maximum K factor of 0.28. For the very low temperature option this insulation is 38 mm thick.
- Shall have an evaporator drain and vent.
- Design shall incorporate 2 independent refrigerant circuits.
- Shall incorporate a refrigerant level control system.

#### Condenser

- Unit shall be equipped with a single condenser.
- Shall be manufactured, tested and stamped in accordance with the European directive for pressurised equipment 2014/68/EU. The maximum refrigerant-side operating pressure will be 2500 kPa, and the maximum water-side pressure will be 1000 kPa.
- Shall be mechanically cleanable shell-and-tube type with removable heads.
- Tubes shall be internally-enhanced, seamless-copper type, and shall be rolled into tube sheets.
- Shall be equipped with Victaulic water connections (water connection kit on demand).
- Design shall incorporate two independent refrigerant circuits and the oil separator.

## **Refrigerant circuits**

Components shall include oil separators, high and low side pressure relief devices (according to applicable standards), discharge and liquid line shutoff valves, filter driers, moisture indicating sight glasses, expansion devices, refrigerant economizers (unit sizes 190, 285, 375), and complete operating charge of both HFC-134a refrigerant and compressor oil.

# **GUIDE SPECIFICATIONS**

## Controls

Unit controls shall include as a minimum: the microprocessor, the LOCAL/OFF/REMOTE/CCN selector and a 6-digit diagnostic display (scroll-down text) with keypad. It shall be capable of performing the following functions:

- Automatic change-over between the main compressor and the non-active compressor(s).
- Capacity control based on leaving chilled fluid temperature with return fluid temperature sensing.
- Limit the chilled fluid temperature pull-down rate at startup to an adjustable range of 0.1 K to 1.1 K per minute to prevent excessive demand spikes at start-up.
- Enable adjustment of leaving chilled water temperature according to the return water temperature or by means of a 0-10 V signal.
- Provide a dual set point for the leaving chilled water temperature activated by a remote contact closure signal.
- Enable a two-level demand limit control (between 0 and 100%), activated by a remote contact closure or a 0 to 10 V signal.
- Control evaporator water pump, safety pump (if installed), and the condenser pump.
- Enable automatic changeover in the main phase or shutdown of two heat pump in a single system.
- With two time scheduling programs enable unit startup control and set-point change

#### **Diagnostics**

- Display module shall be capable of displaying set points, system status (including temperatures, pressures, currents for each compressor, run times and percent loading), and any alarm or alert conditions.
- The control shall allow a quick test of all machine elements to verify the correct operation of every switch, circuit breaker, contactor etc. before the heat pumps is started.
- The control shall be capable of balancing the compressor operating times and the number of compressor startups.
- EXV control, based on throttling (Carrier patent) optimises evaporator charging, ensuring condenser superheat and subcooling.

#### Safeties

Unit shall be equipped with all necessary components, and in conjunction with the control system shall provide the unit with protection against the following:

- Loss of refrigerant charge
- Reverse rotation
- Low chilled fluid temperature
- Low oil pressure
- Current imbalance
- Thermal overload
- High pressure
- Electrical overload
- Loss of phase.

#### **Operating characteristics**

- Unit shall be capable of starting up with 13°C entering water temperature to the condenser.
- Unit shall be capable of starting up with 25°C entering water temperature to the evaporator.

#### **Electrical characteristics**

- Unit electrical power supply shall enter the unit at one (30HX 080-190) or two locations.
- Unit shall operate on 3-phase power supply without neutral.
- Unit with two compressors (30HX 080-190) shall have a factory-installed, star-delta starter to limit electrical inrush current.
- Control voltage shall be supplied by a factory installed transformer.
- Unit shall be supplied with factory-installed, electrical disconnect switch/circuit breaker.

#### Finishing

- Electrical cabinet colour: RAL 7035
- Compressor/heat exchanger colour: RAL 7037.



Quality and Environment Management Systems Approval



Order No.13179, 05.2018. Supersedes order No. 13179-20, 01.2017. Manufacturer reserves the right to change any product specifications without notice. The cover photo is solely for illustration purposes and not contractually binding. Manufactured by: Carrier SCS, Montluel, France. Printed in the European Union.